3,523 research outputs found

    Splanchnic Removal of Atrial Natriuretic Factor (ANF) in Man

    Get PDF
    In order to assess the effect of food ingestion on splanchnic disposal of human alpha-atrial natriuretic peptide (ANF), hepatic-intestinal removal of ANF was determined before and after a test meal. Hepatic venous and arterial plasma samples were obtained from six subjects, most of whom had only disorders of minor degree. Hepatic blood flow (HBF) increased significantly after meal ingestion (1.10 ± 0.17 [SEM] to 1.51 ± 0.26 L/min, P < .01). Baseline arterial ANF (10.9 ± 3.1 pmol/L) did not change significantly. In contrast, hepatic venous ANF increased after meal intake (5.7 ± 2.0 to 8.4 ± 1.9 pmol/L, P < .05), and accordingly the splanchnic fractional extraction decreased (0.53 ± 0.09 to 0.35 ± 0.08), although this was not statistically significant. Splanchnic clearance of ANF increased from 347 ± 90 mL/min to a maximal value of 615 ± 158 mL/min (P < .05). Splanchnic removal of ANF was 3.0 ± 0.5 pmol/min before and increased to a maximum value (7.1 ± 2.2 pmol/min, P < .05) 35 minutes after ingestion of the meal. Our results showed enhanced splanchnic removal of ANF after food intake. This is due to increased hepatic-intestinal clearance of the peptide consequent on increased splanchnic blood flow, rather than altered fractional extraction of ANF

    The GSI Event driven TDC GET4 V1

    Get PDF

    Results of a sub-scale model rotor icing test

    Get PDF
    A heavily instrumented sub-scale model of a helicopter main rotor was tested in the NASA Lewis Research Center Icing Research Tunnel (IRT) in September and November 1989. The four-bladed main rotor had a diameter of 1.83 m (6.00 ft) and the 0.124 m (4.9 in) chord rotor blades were specially fabricated for this experiment. The instrumented rotor was mounted on a Sikorsky Aircraft Powered Force Model, which enclosed a rotor balance and other measurement systems. The model rotor was exposed to a range of icing conditions that included variations in temperature, liquid water content, and median droplet diameter, and was operated over ranges of advance ratio, shaft angle, tip Mach number (rotor speed) and weight coefficient to determine the effect of these parameters on ice accretion. In addition to strain gage and balance data, the test was documented with still, video, and high speed photography, ice profile tracings, and ice molds. The sensitivity of the model rotor to the test parameters, is given, and the result to theoretical predictions are compared. Test data quality was excellent, and ice accretion prediction methods and rotor performance prediction methods (using published icing lift and drag relationships) reproduced the performance trends observed in the test. Adjustments to the correlation coefficients to improve the level of correlation are suggested

    Model rotor icing tests in the NASA Lewis icing research tunnel

    Get PDF
    Tests of a lightly instrumented two-bladed teetering rotor and a heavily instrumented sub-scale articulated main rotor were conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in August 1988 and September and November 1989. The first was an OH-58 tail rotor which had a diameter of 1.575 m and a blade chord of 0.133 m, and was mounted on a NASA designed test rig. The second, a four bladed articulated rotor, had a diameter of 1.83 m with 0.124 m chord blades specially fabricated for the experiment. This rotor was mounted on a Sikorsky Aircraft Powered Force Model, which enclosed a rotor balance and other measurement systems. The models were exposed to variations in temperature, liquid water content, and medium droplet diameter, and were operated over ranges of advance ratio, shaft angle, tip Mach number (rotor speed), and weight coefficient to determine the effect of these parameters on ice accretion. In addition to strain gage and balance data, the test was documented with still, video, and high speed photography, ice profile tracing, and ice molds. Presented here are the sensitivity of the model rotors to the test parameters and a comparison of the results to theoretical predictions

    First beamtime results for PANDA EMC barrel prototype proto 120

    Get PDF

    Evolution of precipitates, in particular cruciform and cuboid particles, during simulated direct charging of thin slab cast vanadium microalloyed steels

    Get PDF
    A study has been undertaken of four vanadium based steels which have been processed by a simulated direct charging route using processing parameters typical of thin slab casting, where the cast product has a thickness of 50 to 80mm ( in this study 50 mm) and is fed directly to a furnace to equalise the microstructure prior to rolling. In the direct charging process, cooling rates are faster, equalisation times shorter and the amount of deformation introduced during rolling less than in conventional practice. Samples in this study were quenched after casting, after equalisation, after 4th rolling pass and after coiling, to follow the evolution of microstructure. The mechanical and toughness properties and the microstructural features might be expected to differ from equivalent steels, which have undergone conventional processing. The four low carbon steels (~0.06wt%) which were studied contained 0.1wt%V (V-N), 0.1wt%V and 0.010wt%Ti (V-Ti), 0.1wt%V and 0.03wt%Nb (V-Nb), and 0.1wt%V, 0.03wt%Nb and 0.007wt%Ti (V-Nb-Ti). Steels V-N and V-Ti contained around 0.02wt% N, while the other two contained about 0.01wt%N. The as-cast steels were heated at three equalising temperatures of 1050C, 1100C or 1200C and held for 30-60 minutes prior to rolling. Optical microscopy and analytical electron microscopy, including parallel electron energy loss spectroscopy (PEELS), were used to characterise the precipitates. In the as-cast condition, dendrites and plates were found. Cuboid particles were seen at this stage in Steel V-Ti, but they appeared only in the other steels after equalization. In addition, in the final product of all the steels, fine particles were seen, but it was only in the two titanium steels that cruciform precipitates were present. PEELS analysis showed that the dendrites, plates, cuboids, cruciforms and fine precipitates were essentially nitrides. The two Ti steels had better toughness than the other steels but inferior lower yield stress values. This was thought to be, in part, due to the formation of cruciform precipitates in austenite, thereby removing nitrogen and the microalloying elements which would have been expected to precipitate in ferrite as dispersion hardening particles

    Further Development of the APFEL - ASIC for the PANDA Calorimeter

    Get PDF
    corecore